Strongly Convergence Theorem of m-accretive Operators
نویسندگان
چکیده
منابع مشابه
Strong convergence theorem for finite family of m-accretive operators in Banach spaces
The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
متن کاملstrong convergence theorem for finite family of m-accretive operators in banach spaces
the purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex banach spacehaving a uniformly gateaux differentiable norm. as a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
متن کاملstrong convergence theorem for finite family of m-accretive operators in banach spaces
the purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex banach spacehaving a uniformly gateaux differentiable norm. as a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
متن کاملΦ-strongly Accretive Operators
Suppose that X is an arbitrary real Banach space and T : X → X is a Lipschitz continuous φ-strongly accretive operator or uniformly continuous φ-strongly accretive operator. We prove that under different conditions the three-step iteration methods with errors converge strongly to the solution of the equation Tx = f for a given f ∈ X.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Modern Applied Science
سال: 2007
ISSN: 1913-1852,1913-1844
DOI: 10.5539/mas.v1n2p41